Discrete Fourier transform associated with generalized Schur polynomials
نویسندگان
چکیده
منابع مشابه
A general construction of Reed-Solomon codes based on generalized discrete Fourier transform
In this paper, we employ the concept of the Generalized Discrete Fourier Transform, which in turn relies on the Hasse derivative of polynomials, to give a general construction of Reed-Solomon codes over Galois fields of characteristic not necessarily co-prime with the length of the code. The constructed linear codes enjoy nice algebraic properties just as the classic one.
متن کاملGeneralized Sampling Expansions Associated with Quaternion Fourier Transform
Quaternion-valued signals along with quaternion Fourier transforms (QFT) provide an effective framework for vector-valued signal and image processing. However, the sampling theory of quaternion valued signals has not been well developed. In this paper, we present the generalized sampling expansions associated with QFT by using the generalized translation and convolution. We show that a σ-bandli...
متن کاملOptimization of Generalized Discrete Fourier Transform for CDMA
Generalized Discrete Fourier Transform (GDFT) with non-linear phase is a complex valued, constant modulus orthogonal function set. GDFT can be effectively used in several engineering applications, including discrete multi-tone (DMT), orthogonal frequency division multiplexing (OFDM) and code division multiple access (CDMA) communication systems. The constant modulus transforms like discrete Fou...
متن کاملDft : Discrete Fourier Transform
A. Table of contents by sections: 1. Abstract (you’re reading this now) 2. Summary of the DFT (How do I do the homework?) 3. Review of continuous-time Fourier series 4. Bandlimited signals and finite Fourier series 5. Sampling theorem for periodic signals 6. Review of quirks of discrete-time frequency 7. Orthogonality and its significance 8. Discrete Fourier Transform (DFT) 9. Use of DFT to com...
متن کاملThe Discrete Fourier Transform∗
1 Motivation We want to numerically approximate coefficients in a Fourier series. The first step is to see how the trapezoidal rule applies when numerically computing the integral (2π) −1 2π 0 F (t)dt, where F (t) is a continuous, 2π-periodic function. Applying the trapezoidal rule with the stepsize taken to be h = 2π/n for some integer n ≥ 1 results in (2π) −1 2π 0 F (t)dt ≈ 1 n n−1 j=0 Y j , ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proceedings of the American Mathematical Society
سال: 2018
ISSN: 0002-9939,1088-6826
DOI: 10.1090/proc/14036